Science with SALT

Marcin Hajduk

Science with SALT, Warsaw, 22.05.2013

Programmes

- ▶ 2011-3-POL-003 [WR] star in a close binary system
- 2012-1-POL-010 Spectroscopic observations of new binary central stars of planetary nebulae
- ▶ 2012-2-POL-006 New planetary nebulae in the Magellanic Clouds

(all RSS longslit proposals)

Spectroscopic observations of new binary central stars of planetary nebulae

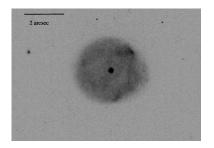


Figure: HST image of the PN H 2-25

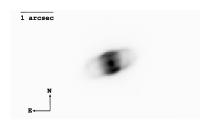


Figure: HST image of the PN He 2-260

Lightcurves of the CSPNe

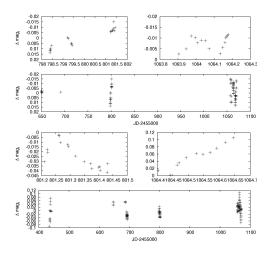
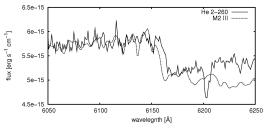
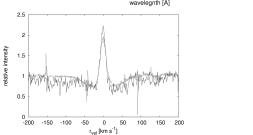




Figure: SAAO photometry of the PN H 2-25 and He 2-260

Possible artifact

- Spectral feature near the TiO 6150Å band detected, shifted with respect to the nebular velocity by 250km s⁻¹
- No other bands detected
- Hydrogen/helium absorption lines do not show any significant shift

Comparison of fluxes of the strongest nebular lines for H 2-25.

λ [Å]	ion	ESO 1.52m ^a	ESO 1.52m ^b	SALT		
		1984-04-30	2001-05-20	2012-08-21		
		2445820	2452091	2456076		
4861	$H\beta$	100.0	100.00	100.0		
4959	[O III]	-	24.6	30.1		
5007	[O III]	58	75.5	95.3		
5754	[N II]	-	2.6	3.0		
5875	Hеī	-	37.4	37.6		
6300	[O I]	-	3.6			
6312	[S III]	-	4.8	3.0		
6364	[O I]	-	-			
6548	[N II]	196	167.3	137.8		
6563	Ηı	1522	1649.2	1547.8		
6584	[N II]	598	528.5	419.9		
6678	Hеī	-	18.7	18.3		
6716	[S II]	21	20.8	16.3		
6731	[S 11]	46	20.6	26.5		
7002	[I O]	-	0.9			
7065	HeI	-	27.4	27.6		
7135	[Ar III]	71	53.6	51.0		
7320	[II O]	73^{d}	50.8	51.3		
7330	[0 11]	73 ^d	45.9	41.2		

 $^{^{\}mathrm{a}}$ Acker et al. (1991) $^{\mathrm{b}}$ Escudero (2004) $^{\mathrm{d}}$ blend of the 7320 and 7330Å Jines $_{\mathrm{b}}$ $_{\mathrm{c}}$ $_{\mathrm{c}}$

Comparison of fluxes of the strongest nebular lines for He 2-260.

λ [Å]	ion	ESO 1.52m ^a	ESO 1.52m ^b	VLT	SAAO 1.9m	SALT
		1984-04-30	2001-07-01	2005-04-20	2012-05-07	2012-05-29
		2445820	2452091	2453480	2456054	2456076
4861	$H\beta$	100.0	100.00	100.0	100.0	100.0
4959	[O III]	-	1.6	1.8	2.6	2.4
5007	[O III]	-	5.1	5.5	7.8	7.9
5754	[N II]	3.0	4.1	4.1	4.1	4.2
5875	He I	4.0	2.1	2.8	2.9	2.9
6300	[O I]	5.0	3.5	3.4	3.7	3.4
6312	[S III]	-	1.3	1.4	2.0	1.5
6364	[O I]	2.2:	1.1	1.1	1.1	1.1
6548	[N II]	77.0	59.6	57.8	61.8	62.9
6563	Ηı	581.0	498.9	508.9	492.6	493.3
6584	[N II]	213.0	183.8	190.0	179.3	185.9
6678	He I	-	0.5		1.4	0.8
6716	[S II]	4.0	4.2		4.2	3.6
6731	[S II]	10.0	9.0		8.0	8.1
7002	[O I]	-	$0.9^{\rm c}$		0.9	0.7
7065	HeI	-	1.1		1.9	1.9
7135	[Ar III]	-	1.6		2.1	2.3
7320	[O II]	$80^{ m d}$	35.8		44.8	49.8
7330	[O II]	80 ^d	41.2		39.5	40.4

 $^{^{\}rm a}$ Acker et al. (1991) $^{\rm b}$ Escudero (2004) $^{\rm c}$ misidentyfied as [Ar V] $\lambda7005.6$ by Escudero (2004)

dblend of the 7320 and 7330Å lines

Ion stratification in a PN

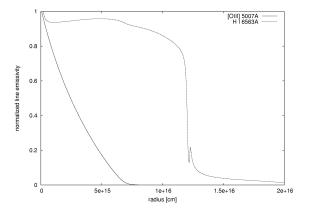


Figure: Radial plot of the emissivity of the [O $\scriptstyle
m III$] 5007Å line compared with the m Hlpha line

Evolutionary tracks for post-AGB stars

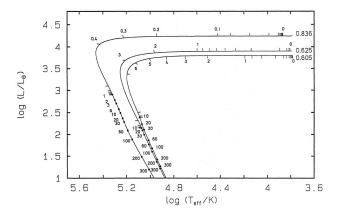


Figure: Evolutionary tracks for different masses by Blöcker (1995)

Evolution of the emission line fluxes in He 2-260

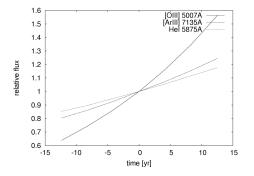
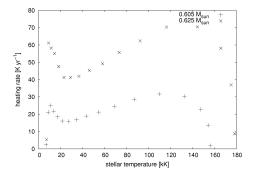
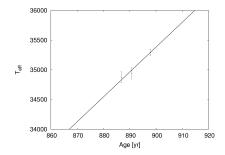
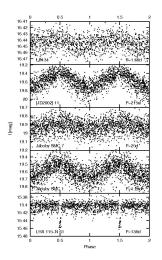


Figure: Predicted evolution of the nebular line fluxes for the PN He 2-260 modelled with the Cloudy code (Ferland, 1998)

Heating rate vs mass of the central star


Figure: Comparison of the heating rate for two different masses

Fitting the evolutionary models

- ▶ $0.622^{+0.004}_{-0.006} \rm{M}_{\odot}$ using the evolutionary track by Blöcker (1995) or $0.638^{+0.007}_{-0.009} \rm{M}_{\odot}$ using Vassiliadis & Wood (1993)
- ► The age of the central, spherical component of the nebula, of about 1000 years is in better agreement with the post-AGB evolutionary track by Blöcker (1200 years) than Vassiliadis & Wood (550 yr)

Variable PN candidates in the SMC (I mag from 16.6 to 19.6)

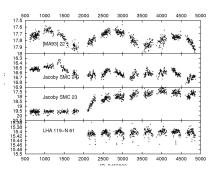


Figure: OGLE II and III photometry of the SMC PNe

Spectroscopy of the variable stars

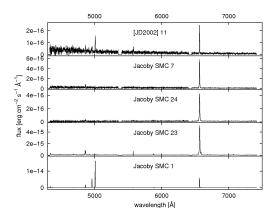


Figure: SALT spectroscopy of selected SMC variables

Spectra of Jacoby SMC 1

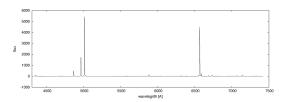


Figure: SALT spectroscopy of Jacoby SMC 1 (two 1200s spectra)

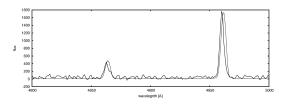


Figure: Cluse-up at the ${
m H}eta$ spectral region

Summary

- ▶ [O III] 5007Å line flux change observed in a young PN He 2-260 on a timescale of a decade
- Heating rate determined and mass of the central star interpolated from the evolutionary tracks
- ► Variability of He 2-260 and H 2-25 due to pulsations rather than binarity (Zalewski, 1993; Gautschy, 1993; Handler, 2003)
- First binary central star of a PN in the SMC confirmed
- ▶ Relative flux calibration on SALT seems to be reliable

Bibliography

Acker, A., Raytchev, B., Koeppen, J., Stenholm, B., 1991, A&AS, 89, 237

Blöcker, T., 1995, A&A, 299, 755

Escudero, A. V., Costa, R. D. D., Maciel, W. J., 2004, A&A, 414, 211

Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., Verner, E. M., 1998, PASP, 110, 761

Gautschy, A., 1993, MNRAS, 265, 340

Handler, G., 2003, IAUS, 209, 237

Vassiliadis, E., Wood, P. R., 1993, ApJ, 413, 641

Zalewski, J., 1993, AcA, 43, 431